Introduction to Computer Science

Jiaheng Lu
Department of Computer Science
Renmin University of China
www.jiahenglu.net
Survey questions (19 students)

- Introduction to computer science
- Introduction to computer scientists
- How to make a good research presentation
- How to selecting research topics
- Computer science paper reading
- Research paper and thesis writing
- Computer science experiments
- Publishing your research work
- Job hunting tips and interview skills
Survey results

- (4.68) Research paper and thesis writing
- (4.21) Job hunting tips and interview skills
- (4.21) How to make a good research presentation
- (4.10) How to selecting research topics
- (4.05) Computer science experiments
- (4.00) Computer science paper reading
- (3.95) Publishing your research work
- (3.58) Introduction to computer scientists
- (2.79) Introduction to computer science
Review

- What is Computer Science?
- Subfields of Computer Science
Brookshears's Diagram

- Limitations of Execution of Communication of Discovery of Representation of
 - theory of computation,…
 - architecture, operating systems, networks,…
 - algorithmics,…
 - software engineering,…
 - artificial intelligence,…
 - data structures, programming language design,…
Schneider & Gersting's Diagram

- Social Issues
 - artificial intelligence,…
- Applications
 - programming langs, compilers,…
- The Software World
 - assemblers, operating systems…
- The Virtual Machine
 - computer organization,…
- The Hardware World
 - design & analysis of algorithms,…
- Algorithmic Foundations of CS
Subfields of Computer Science

- Algorithms and Data Structures
- Architecture
- Operating Systems and Networks
- Software Engineering
- Artificial Intelligence and Robotics
- Bioinformatics
- Programming Languages
- Databases and Information Retrieval
- Graphics
- Human-Computer Interaction
- Computational Science
- Organizational Informatics
Database Research
Outline

- Five challenges on database research
 - Structured and unstructured data
 - Declarative programming
 - Database engine revisiting
 - Cloud data management
 - Mobile application

- Our research to meet those challenges
Senior database researchers have gathered every few years to assess the state of database research and to recommend problems and problem areas deserve additional focus.

- Laguna Beach, Calif. in 1989
- Palo Alto, Calif. ("Lagunita") in 1990 and 1995
- Cambridge, Mass. in 1996
- Asilomar, Calif. in 1998
- Lowell, Mass. in 2003
Claremont Meeting

- About 20 Database researchers
- Claremont Resort, Berkeley, CA
 May 29-30, 2008
The interplay of structured and unstructured data(1)

- Witnessing a growing amount of structured data
 - Millions of database hidden (Deep Web)
 - Millions of HTML tables and Mashups
 - Web 2.0 Service photo video websites
The interplay of structured and unstructured data(2)

- Research challenge:
 - Extract structured meaning for unstructured data (IR, ML)
 - Querying and deriving insight from heterogeneous data
 - Keyword queries
 - Pay-as-you-go fashion
XML search (1)

- XML twig query processing (SIGMOD’05, VLDB’05)
 - Problem Statement
 - Given an XML twig pattern Q, and an XML database D, we need to find ALL the matches of Q on D.

An XML tree:

Twig pattern:

Title
Section
Figure

Query answers:

(s1, t1, f1)
(s2, t2, f1)
(s1, t2, f1)
XML search (2)

- XML keyword search (ICDE’09)
 - Problem Statement
 - How to efficiently rank the results of XML keyword query
 - Contribution:
 - Extend TF/IDF by incorporating the structure of XML data
Approximate string search

Approximate string queries (ICDE’08,09)

Problem Statement

Given a collection of string data, how to efficiently perform approximate search

Output: strings s that satisfy $\text{Sim}(q,s) \leq \delta$
Revisiting database engines

- Research topics
 - Remote RAM and flash as persistent media
 - Treat query optimization and physical data as a unified, adaptive, self-tuning task
 - Compressing and encrypting data with query optimization
 - Designing systems that embrace non-relational data models
Declarative programming for Emerging platforms (1)

- Data-centric approach for emerging platforms
 - Manycore chips
 - Distributed services
 - Cloud computing platforms
 -
Declarative programming for Emerging platforms (2)

- Good examples
 - Map-reduce: data-parallelism
 - Ruby, Rails query-like logic
 - XQuery
Cloud data management (1)

- Cloud service: shared commodity hardware for computing and storage
 - Application service (salesforce.com)
 - Storage service (Amazon Web service)
 - Computing service (Google App Engine)
 - Data service (Microsoft SQLServer data center)
Cloud data management (2)

- Research challenge
 - Self-management database: limited human invention, various workloads
 - Large scale query processing and optimization
 - Data security and privacy with sharing
Cloud data management

Hbase

- Web-desktop1
 - Master
- Web-desktop2
 - HRegion (Tablet) Server
- Web-desktop3
 - HRegion (Tablet) Server

HDFS

- Web-desktop1
 - Master (NameNode)
- Web-desktop2
 - Slave (DataNode)
- Web-desktop3
 - Slave (DataNode)
Research topics about cloud data (1)

- Self management and self tuning
 - Tune
 - Monitor
 - Diagnose

- Query optimization on thousands of nodes
Research topics about cloud data(2)

- Source scheduling
 - Investigate the way the scheduling algorithm is currently implemented.
 - Multi-Tenant-Efficient
Mobile applications

- “On the go” interaction
- Location based service